Sains Malaysiana 54(3)(2025): 815-826
http://doi.org/10.17576/jsm-2025-5403-16
Effects
of Low-Protein Diet on Renal Oxidative Stress, Biochemistry and Histology in Weaned Rats
(Kesan
Diet Rendah Protein terhadap Tekanan Oksidatif Buah Pinggang, Biokimia dan Histologi pada Tikus
Cerai Susu)
YEE XIN LEE1, SEE
MENG LIM2,*, XIN QIAN NG2, PEI
TENG LUM2, ELVY SUHANA MOHD RAMLI3,
KOK-YONG CHIN4 & SITI BALKIS BUDIN1
1Centre for
Diagnostic, Therapeutic and Investigative Studies (CODTIS), Faculty of Health
Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
2Centre for
Community Health Studies (ReaCH), Faculty of Health
Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
3Department
of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras,
Kuala Lumpur, Malaysia
4Department
of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras,
Kuala Lumpur, Malaysia
Received:
2 September 2024/Accepted: 28 November 2024
Abstract
A low-protein diet (LPD) leads to low plasma protein
and insufficient building blocks for normal kidney development, especially in
children. This study aimed to determine the effects of short-term LPD on renal
oxidative stress, biochemical profile and histologic changes in weaned rats.
Three-week-old male and female Sprague Dawley rats were divided into the LPD
group and the normal protein diet (NPD) group for 3 weeks. Renal oxidative
stress, biochemical profile and histology were examined. Both male and female rats
had significantly (p<0.05) lower body weight, smaller kidneys and higher
advanced oxidation protein product concentrations after a 3-week LPD. Only
LPD-fed females had lower malondialdehyde concentrations and superoxide
dismutase activity but higher reduced glutathione concentrations compared to
NPD-fed females. Histologic examination showed abnormal histologic features in
the proximal and distal tubules, fibrosis in the cuboidal cells, reduced lumen
diameter, smaller glomerular tuft area and glomerular tuft volume in LPD-fed
male and female groups. In conclusion, short-term protein malnutrition leads to
renal injury in male and female weaned rats. The different responses of male
and female rats to protein malnutrition suggest sexual dimorphism and hormonal
factors in kidney development, with females showing a higher susceptibility to
oxidative damage.
Keyword: Kidney;
low-protein diet; oxidative stress
Abstrak
Diet rendah protein (LPD) menyebabkan protein plasma yang rendah dan blok binaan yang tidak mencukupi untuk perkembangan ginjal yang normal, terutamanya pada kanak-kanak. Kajian ini bertujuan untuk menentukan kesan jangka pendek LPD terhadap tekanan oksidatif ginjal, profil biokimia dan perubahan histologi ginjal dalam tikus cerai susu. Tikus Sprague Dawley jantan dan betina berusia tiga minggu dibahagikan kepada kumpulan LPD dan kumpulan diet protein biasa (NPD) selama 3 minggu. Tekanan oksidatif ginjal, profil biokimia dan histologi ginjal telah diperiksa.
Tikus jantan dan betina mempunyai berat badan yang lebih rendah (p<0.05), ginjal yang lebih kecil dan kepekatan pengoksidaan produk protein lanjutan yang lebih tinggi 3 minggu selepas LPD. Hanya tikus betina yang diberi LPD mempunyai kepekatan malondialdehid dan aktiviti superoksida dismutase yang lebih rendah dan kepekatan glutation terturun yang lebih tinggi berbanding tikus betina yang diberi NPD. Pemeriksaan histologi mendedahkan ciri histologi yang tidak normal dalam tubul proksimal dan distal,
fibrosis dalam sel kuboid, diameter lumen yang berkurangan dan kawasan tuf glomerulus
dan isi padu tuf glomerulus yang lebih kecil pada kumpulan jantan dan betina yang diberi LPD. Kesimpulannya, malpemakanan protein jangka pendek menyebabkan kecederaan ginjal pada tikus jantan dan betina yang telah bercerai susu. Tindak balas yang berbeza antara tikus jantan dan tikus betina terhadap kekurangan zat protein menunjukkan dimorfisme seks dan faktor hormon dalam perkembangan ginjal, dengan betina menunjukkan kerentanan yang lebih tinggi kepada kerosakan oksidatif.
Kata kunci: Ginjal; pemakanan rendah protein; tekanan oksidatif
REFERENCES
Adi, G.S., Pratiwi, E. &
Amanda, S.P. 2021. Protein Consumption Program (PCP) dalam pencegahan stunting pada anak di masa
pandemi corona virus disease 19. Health Sciences and Pharmacy Journal 5(3): 69-73.
Beckerman-Hsu, J.P.,
Chatterjee, P., Kim, R., Sharma, S. & Subramanian, S. 2020. A typology of
dietary and anthropometric measures of nutritional need among children across
districts and parliamentary constituencies in India, 2016. Journal of Global Health 10(2): 1-10.
Beyer, W.F. & Fridovich, I.
1987. Assaying for superoxide dismutase activity: Some large consequences of
minor changes in conditions. Analytical Biochemistry 161(2): 559-566.
Cao, W., Hou, F.F. & Nie,
J. 2014. AOPPs and the progression of kidney disease. Kidney International Supplements 4(1): 102-106.
Cao, W., Xu, J., Zhou, Z.M.,
Wang, G.B., Hou, F.F. & Nie, J. 2013. Advanced oxidation protein products
activate intrarenal renin–angiotensin system via a CD36-mediated,
redox-dependent pathway. Antioxidants
Redox Signalling 18(1): 19-35.
D'Agati, V.D., Kaskel, F.J.
& Falk, R.J. 2011. Focal segmental glomerulosclerosis. The New England Journal of Medicine 365(25):
2398-2411.
D’Marco, L., Puchades, M.J.,
Escudero-Saiz, V., Giménez-Civera, E., Terradez, L., Moscardó, A.,
Carbonell-Asins, J.A., Pérez-Bernat, E., Torregrosa, I. & Moncho, F. 2022.
Renal histologic findings in necropsies of type 2 diabetes mellitus patients. Journal of
Diabetes Research 2022: 3893853.
Dalvi, P.S., Yang, S., Swain,
N., Kim, J., Saha, S., Bourdon, C., Zhang, L., Chami, R. & Bandsma, R.H.
2018. Long-term metabolic effects of malnutrition: Liver steatosis and insulin
resistance following early-life protein restriction. PLoS ONE 13(7): e0199916.
Ece, A., Gözü, A., Bükte, Y.,
Tutanç, M. & Kocamaz, H. 2007. The effect of malnutrition on kidney size in
children. Pediatric Nephrology 22:
857-863.
Ellman, G.L. 1959. Tissue
sulfhydryl groups. Archives of
Biochemistry and Biophysics 82(1): 70-77.
Harris, A.N., Castro, R.A.,
Lee, H-W., Verlander, J.W. & Weiner, I.D. 2021. Role of the renal androgen
receptor in sex differences in ammonia metabolism. American Journal of Physiology-Renal Physiology 321(5): F629-F644.
Institute for Public Health.
2023. Technical Report National Health
and Morbidity Survey (NHMS) 2022: Maternal and Child Health. Malaysia:
National Institutes of Health.
Kang, L.S., Masilamani, S.
& Boegehold, M.A. 2016. Juvenile growth reduces the influence of epithelial
sodium channels on myogenic tone in skeletal muscle arterioles. Clinical and Experimental Pharmacology and
Physiology 43(12): 1199-1207.
Ledwoż, A., Michalak, J.,
Stȩpień, A. & Ka̧dziołka, A. 1986. The relationship
between plasma triglycerides, cholesterol, total lipids and lipid peroxidation
products during human atherosclerosis. Clinica
Chimica Acta 155(3): 275-283.
Liu, Q., Wang, Y., Chen, Z.,
Guo, X. & Lv, Y. 2021. Age-and sex-specific reference intervals for blood
urea nitrogen in Chinese general population. Scientifc Reports 11(1): 10058.
Long, L., Zhang, X., Wen, Y., Li, J., Wei, L.,
Cheng, Y., Liu, H., Chu, J., Fang, Y., Xie, Q., Shen, A. & Peng, J. 2022. Qingda granule attenuates angiotensin
ii-induced renal apoptosis and activation of the p53 pathway. Front.
Pharmacol. 12: 770863.
Malta, A., de Oliveira, J.C.,
Ribeiro, T., Tófolo, L.P., Barella, L.F., Prates, K.V., Miranda, R.A., Elmhiri,
G., Franco, C. & Agostinho, A.R. 2014. Low-protein diet in adult male rats
has long-term effects on metabolism. Journal
of Endocrinology 221(2): 285-295.
Michael, H., Amimo, J.O., Rajashekara, G., Saif,
L.J. & Vlasova, A.N. 2022. Mechanisms of kwashiorkor-associated immune
suppression: Insights from human, mouse, and pig studies. Front. Immunol. 13: 826268.
Mısırlıoğlu,
M., Yıldızdaş, D., Ekinci, F., Horoz, Ö.Ö., Özkale, Y., Özkale,
M., Yöntem, A., Arslan, İ. & Tümgör, G. 2023. The effects of protein
intake on clinical outcome in pediatric intensive care units. Turkish Archives of Pediatrics 58(1):
68.
National Health Service. 2022.
What is weaning? https://www.nhs.uk/start-for-life/baby/weaning/ (Accessed
on 13 April 2024).
Ou, H., Huang, Z., Mo, Z. &
Xiao, J. 2017. The characteristics and roles of advanced oxidation protein
products in atherosclerosis. Cardiovascular
Toxicology 17(1): 1-12.
Pedroza, A., Ferreira, D.S.,
Santana, D.F., da Silva, P.T., de Aguiar Júnior, F.C.A., Sellitti, D.F. &
Lagranha, C.J. 2019. A maternal low-protein diet and neonatal overnutrition
result in similar changes to glomerular morphology and renal cortical oxidative
stress measures in male Wistar rats. Applied Physiology, Nutrition,
and Metabolism 44(2): 164-171.
Pezeshki, A., Zapata, R.C.,
Singh, A., Yee, N.J. & Chelikani, P.K. 2016. Low protein diets produce
divergent effects on energy balance. Scientific
Reports 6(1): 25145.
Sahoo, D.K., Heilmann, R.M.,
Paital, B., Patel, A., Yadav, V.K., Wong, D. & Jergens, A.E. 2023. Oxidative stress, hormones, and effects of natural
antioxidants on intestinal inflammation in inflammatory bowel disease. Frontiers
in Endocrinology 14: 1217165.
Smith, G.I. & Mittendorfer,
B. 2016. Sexual dimorphism in skeletal muscle protein turnover. Journal of Applied Physiology 120(6):
674-682.
Snelson, M., Clarke, R.E.,
Nguyen, T.V., Penfold, S.A., Forbes, J.M., Tan, S.M. & Coughlan, M.T. 2021.
Long term high protein diet feeding alters the microbiome and increases
intestinal permeability, systemic inflammation and kidney injury in mice. Molecular Nutrition Food Research 65(8):
2000851.
Stamellou, E., Sterzer, V.,
Alam, J., Roumeliotis, S., Liakopoulos, V. & Dounousi, E. 2024.
Sex-specific differences in kidney function and blood pressure regulation. International
Journal of Molecular Sciences 25(16): 8637.
Theys, N., Clippe, A.,
Bouckenooghe, T., Reusens, B. & Remacle, C. 2009. Early low protein diet
aggravates unbalance between antioxidant enzymes leading to islet dysfunction. PLoS ONE 4(7): e6110.
Uauy, R., Kurpad, A.,
Tano-Debrah, K., Otoo, G.E., Aaron, G.A., Toride, Y. & Ghosh, S. 2015. Role
of protein and amino acids in infant and young child nutrition: Protein and
amino acid needs and relationship with child growth. Journal of Nutrition Science Vitaminol 61(Supplement): S192-S194.
Valaei, K., Taherkhani, S.,
Arazi, H. & Suzuki, K. 2021. Cardiac oxidative stress and the therapeutic
approaches to the intake of antioxidant supplements and physical activity. Nutrients 3(10): 3483.
Vega, C.C., Reyes‐Castro,
L.A., Rodríguez‐González, G.L., Bautista, C.J., Vázquez‐Martínez,
M., Larrea, F., Chamorro‐Cevallos, G.A., Nathanielsz, P.W. &
Zambrano, E. 2016. Resveratrol partially prevents oxidative stress and
metabolic dysfunction in pregnant rats fed a low protein diet and their
offspring. Antioxidants 594(5):
1483-1499.
Wang, P., Yi, T., Mao, S. &
Li, M. 2023. Neuroprotective mechanism of human umbilical cord mesenchymal stem
cell‐derived extracellular vesicles improving the phenotype polarisation
of microglia via the PI3K/AKT/Nrf2 pathway in vascular dementia. Synapse 77(4): e22268.
Wells, J.C. 2019. Body
composition of children with moderate and severe undernutrition and after
treatment: A narrative review. Wells BMC
Medicine 17(1): 1-9.
Williamson, C. & Beatty, C.
2015. Weaning and childhood nutrition. InnovAiT:
Education and Inspiration for General Practice 8(3): 141-145.
Witko-Sarsat, V., Friedlander,
M., Capeillère-Blandin, C., Nguyen-Khoa, T., Nguyen, A.T., Zingraff, J.,
Jungers, P. & Descamps-Latscha, B. 1996. Advanced oxidation protein
products as a novel marker of oxidative stress in uremia. Kidney International 49(5): 1304-1313.
World Health Organization.
2024. Malnutrition. https://www.who.int/news-room/fact-sheets/detail/malnutrition (Diakses
pada April 13 2024).
Ying, M., Yang, J., Huang, Z.,
Ling, Y., Wang, B., Huang, H., Li, Q., Liu, J., Liu, Y. & Chen, Z. 2022.
Association between malnutrition and contrast-associated acute kidney injury in
congestive heart failure patients following coronary angiography. Frontiers in Nutrition 9: 937237.
*Corresponding author; email: smlim@ukm.edu.my